SIZE-UP:

- Provide “CAN” report:
 - Conditions
 - Actions
 - Needs

- Quickly survey the building – perimeter & interior (if possible)

- “BAG it:”
 - Where’s the fire…
 - Been
 - At
 - Going

- “Not fighting the fire you see in street, it’s the fire you’ll fight once you get inside”
DETERMINING HANDLINE PLACEMENT:

- Identify the exact location and extent of the fire before committing
- Take the most linear/unobstructed route
 - Initiating an aggressive attack as soon as possible
 - Protecting life is the number one priority
- Purpose of the first (interior) line is to protect the primary means of egress
 - Typically the front door – even if it’s the area of involvement (‘burned side’)
 - Grants access to the building’s main arteries
- Position the line to “take/control space” – safeguarding victims & search crews
 - Placed between the fire and interior exposures
 - Drive byproducts of combustion away from the survivable space
 - Allow for rapid advance to the seat of the fire to complete extinguishment
ESTIMATING THE STRETCH:

- Rig to Door + (Door to Floor) + Feet to Seat = Minimum Amount Required
- ‘DOSE:’
 - Distance (from apparatus to building entrance)
 - Obstacles (objects, conditions or topography affecting stretch)
 - Stairs (straight run – return/scissor – right angle – cork screw)
 - Elevation (# of floors)

- Factor in a little extra – rounding up to the nearest length
- Rules of thumb:
 - One (50’) length will cover the fire floor in most dwellings
 - Return stairs typically require one length per floor
 - Well-hole or rope stretches can cover five floors per length
 - One length covers two floors on cork screw stairs

SELECTING THE APPROPRIATE HANDLINE:

- GPM vs HRR
 - Extinguishment = Overcoming HRR
 - Requires “overwhelming superior force”
 - Exceeding the “critical flow rate” (minimum GPM required)
- Reach and penetration suitable for the environment
- 2.5” hose for ‘ADULT(S)’ fires
 - Advanced - Defensive - Unknown (size) - Large (area) - Tons (water) – Standpipe
- Greater water delivery = less steam production (& faster knock-down)
 - Poor flow/stream causes “premature vaporization” – limiting heat absorption
 - Steam disrupts the thermal balance – reducing visibility & tenability
REFERENCES:

